std::student_t_distribution

来自cppreference.com
< cpp‎ | numeric‎ | random
 
 
 
 
 
定义于头文件 <random>
template< class RealType = double >
class student_t_distribution;
(C++11 起)

生成随机浮点值 x ,分布服从概率密度函数:

p(x|n) =
1
·
Γ(
n+1
2
)
Γ(
n
2
)
·

1+
x2
n


-
n+1
2

其中 n自由度数。在给定 n+1 个独立测量,每个都带标准差未知的加性误差,如在物理测量中估计未知正态分布值的平均数时使用此分布。或者,在给定 n+1 个样本,估计拥有未知标准差的正态分布的未知平均值时,使用此分布。

std::student_t_distribution 满足随机数分布 (RandomNumberDistribution) 的所有要求。

模板形参

RealType - 生成器所生成的结果类型。若它不是 floatdoublelong double 之一则效果未定义。

成员类型

成员类型 定义
result_type RealType
param_type(C++11) 参数集的类型,见随机数分布 (RandomNumberDistribution)

成员函数

构造新分布
(公开成员函数)
(C++11)
重置分布的内部状态
(公开成员函数)
生成
生成分布中的下个随机数
(公开成员函数)
特征
返回 n 分布参数(自由度)
(公开成员函数)
(C++11)
获取或设置随机参数对象
(公开成员函数)
(C++11)
返回最小的潜在生成值
(公开成员函数)
(C++11)
返回最大的潜在生成值
(公开成员函数)

非成员函数

(C++11)(C++11)(C++20 中移除)
比较两个分布对象
(函数)
执行伪随机数分布的流输入和输出
(函数模板)

示例

#include <algorithm>
#include <cmath>
#include <iomanip>
#include <iostream>
#include <map>
#include <random>
#include <vector>
 
template <int Height = 5, int BarWidth = 1, int Padding = 1, int Offset = 0,
          bool DrawMinMax = true, class Sample>
void draw_vbars(Sample const& s) {
    static_assert((Height > 0) && (BarWidth > 0) && (Padding >= 0) && (Offset >= 0));
    auto cout_n = [](auto const& v, int n) { while (n-- > 0) { std::cout << v; } };
    const auto [min, max] = std::minmax_element(std::cbegin(s), std::cend(s));
    std::vector<std::div_t> qr;
    for (float e : s) {
        qr.push_back(std::div(std::lerp(0.f, Height*8, (e - *min)/(*max - *min)), 8));
    }
    for (auto h{Height}; h-- > 0 ;) {
        cout_n(' ', Offset);
        for (auto [q, r] : qr) {
            char d[] = "█"; // == { 0xe2, 0x96, 0x88, 0 }
            q < h ? d[0] = ' ', d[1] = '\0' : q == h ? d[2] -= (7 - r) : 0;
            cout_n(d, BarWidth);
            cout_n(' ', Padding);
        }
        if (DrawMinMax && Height > 1)
            h == Height - 1 ? std::cout << "┬ " << *max:
                     h != 0 ? std::cout << "│"
                            : std::cout << "┴ " << *min;
        cout_n('\n', 1);
    }
}
 
int main() {
    std::random_device rd{};
    std::mt19937 gen{rd()};
 
    std::student_t_distribution<> d{10.0f};
 
    const int norm = 10'000;
    const float cutoff = 0.000'3f;
 
    std::map<int, int> hist{};
    for(int n=0; n<norm; ++n) { ++hist[std::round(d(gen))]; }
 
    std::vector<float> bars;
    std::vector<int> indices;
    for (const auto [n, p] : hist) {
        if (float x = p * (1.0f / norm); cutoff < x) {
            bars.push_back(x);
            indices.push_back(n);
        }
    }
 
    draw_vbars<8,5>(bars);
    for (int n : indices) { std::cout << " " << std::setw(2) << n << "   "; }
    std::cout << '\n';
}

可能的输出:

                        █████                               ┬ 0.3753
                        █████                               │
                  ▁▁▁▁▁ █████                               │
                  █████ █████ ▆▆▆▆▆                         │
                  █████ █████ █████                         │
                  █████ █████ █████                         │
            ▄▄▄▄▄ █████ █████ █████ ▄▄▄▄▄                   │
▁▁▁▁▁ ▃▃▃▃▃ █████ █████ █████ █████ █████ ▃▃▃▃▃ ▁▁▁▁▁ ▁▁▁▁▁ ┴ 0.0049
 -4    -3    -2    -1     0     1     2     3     4     5

外部链接

Weisstein, Eric W. “学生 t 分布”来自 MathWorld--A Wolfram Web Resource 。